06/28 인공지능 펭귄만들기
1. 환경 변수 확인
- 파이썬 path가 잡혀있는지 확인
- 3.62 확인
cmd
python -V
where python
2. ml agent 다운로드
workspace/unity에 저장
https://github.com/Unity-Technologies/ml-agents
Unity-Technologies/ml-agents
Unity Machine Learning Agents Toolkit. Contribute to Unity-Technologies/ml-agents development by creating an account on GitHub.
github.com
ml agent 세팅
https://cafe.naver.com/gameprogramming7
종로 더조은 게임 개발자 과정 3기 : 네이버 카페
종로 더조은 컴퓨터 게임 개발자 양성과정 3기 입니다.
cafe.naver.com
D:\workspace\unity\ml-agents-release_17\ml-agents-release_17\com.unity.ml-agents
package.json
3. 튜토리얼 진행
Asset/Meshes
펭귄 에셋 다운 및 튜토리얼
https://www.immersivelimit.com/tutorials/reinforcement-learning-penguins-part-1-unity-ml-agents
Reinforcement Learning Penguins (Part 1/4) | Unity ML-Agents — Immersive Limit
Unity Project Setup and Asset Import
www.immersivelimit.com
or
카페
https://cafe.naver.com/gameprogramming7/413
인공지능
펭귄 만들기 파이썬 3.6.2 버전 확인하기 https://github.com/Unity-Technologies/ml-agents Download Zip 하고 압축풀어서...
cafe.naver.com
4. 훈련시작
Penguin.yaml
behaviors:
Penguin:
trainer_type: ppo
hyperparameters:
batch_size: 128
buffer_size: 2048
learning_rate: 0.0003
beta: 0.01
epsilon: 0.2
lambd: 0.95
num_epoch: 3
learning_rate_schedule: linear
network_settings:
normalize: false
hidden_units: 256
num_layers: 2
vis_encode_type: simple
reward_signals:
extrinsic:
gamma: 0.99
strength: 1.0
keep_checkpoints: 5
max_steps: 1000000
time_horizon: 128
summary_freq: 5000
threaded: true
mlagents-learn [Penguin.yaml위치 지정] --run-id Penguin_01
mlagents-learn config/ppo/Penguin.yaml --run-id Penguin_01
mlagents가 작동 안할 시
pip3 install torch~=1.7.1 -f https://download.pytorch.org/whl/torch_stable.html
안되면
python -m pip install mlagents==0.26.0
중지
mlagents 가 실행중인 cmd에서 컨트롤 + c
재시작 시
mlagents-learn [Penguin.yaml위치 지정] --run-id Penguin_01 --resume
훈련된 파일
D:\workspace\unity\ml-agents-release_17\ml-agents-release_17\results\Penguin_01\Penguin.onnx
model에 Penguin.onnx를 어사인하면 훈련된 결과를 볼 수 있음